Custom Design and Analysis of High-Density Oligonucleotide Bacterial Tiling Microarrays
نویسندگان
چکیده
BACKGROUND High-density tiling microarrays are a powerful tool for the characterization of complete genomes. The two major computational challenges associated with custom-made arrays are design and analysis. Firstly, several genome dependent variables, such as the genome's complexity and sequence composition, need to be considered in the design to ensure a high quality microarray. Secondly, since tiling projects today very often exceed the limits of conventional array-experiments, researchers cannot use established computer tools designed for commercial arrays, and instead have to redesign previous methods or create novel tools. PRINCIPAL FINDINGS Here we describe the multiple aspects involved in the design of tiling arrays for transcriptome analysis and detail the normalisation and analysis procedures for such microarrays. We introduce a novel design method to make two 280,000 feature microarrays covering the entire genome of the bacterial species Escherichia coli and Neisseria meningitidis, respectively, as well as the use of multiple copies of control probe-sets on tiling microarrays. Furthermore, a novel normalisation and background estimation procedure for tiling arrays is presented along with a method for array analysis focused on detection of short transcripts. The design, normalisation and analysis methods have been applied in various experiments and several of the detected novel short transcripts have been biologically confirmed by Northern blot tests. CONCLUSIONS Tiling-arrays are becoming increasingly applicable in genomic research, but researchers still lack both the tools for custom design of arrays, as well as the systems and procedures for analysis of the vast amount of data resulting from such experiments. We believe that the methods described herein will be a useful contribution and resource for researchers designing and analysing custom tiling arrays for both bacteria and higher organisms.
منابع مشابه
Getting Started in Tiling Microarray Analysis
The availability of sequenced eukaryotic genomes and commercial oligonucleotide tiling microarrays has enabled many genomics applications. Different from expression microarrays, tiling microarrays have probes that cover the entire genome or contigs of the genome in an unbiased fashion. Currently three commercial sources provide tiling microarrays with different probe lengths and spacing, and ar...
متن کاملOptimized design and assessment of whole genome tiling arrays
MOTIVATION Recent advances in microarray technologies have made it feasible to interrogate whole genomes with tiling arrays and this technique is rapidly becoming one of the most important high-throughput functional genomics assays. For large mammalian genomes, analyzing oligonucleotide tiling array data is complicated by the presence of non-unique sequences on the array, which increases the ov...
متن کاملAnalysis of oligo hybridization properties by high-resolution tiling microarrays in rice Analysis of oligo hybridization properties by high-resolution tiling microarrays in rice
Rice genome sequencing and computational annotation provide a static map for understanding this model of Gramineae species. With the development of in situ oligonucleotide synthesis technology, tiling-path microarrays have become a dynamic and efficient way for monitoring large-scale transcriptional activities and detecting novel transcribed elements missed by software. Unlike conventional cDNA...
متن کاملTranscript mapping with high-density oligonucleotide tiling arrays
MOTIVATION High-density DNA tiling microarrays are a powerful tool for the characterization of complete transcriptomes. The two major analytical challenges are the segmentation of the hybridization signal along genomic coordinates to accurately determine transcript boundaries and the adjustment of the sequence-dependent response of the oligonucleotide probes to achieve quantitative comparabilit...
متن کاملEfficient Computational Design of Tiling Arrays Using a Shortest Path Approach
Genomic tiling arrays are a type of DNA microarrays which can investigate the complete genome of arbitrary species for which the sequence is known. The design or selection of suitable oligonucleotide probes for such arrays is however computationally difficult if features such as oligonucleotide quality and repetitive regions are to be considered. We formulate the minimal cost tiling path proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009